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Abstract—Over the last decade, kernel methods for nonlinear
processing have successfully been used in the machine learning
community. The primary mathematical tool employed in these
methods is the notion of the Reproducing Kernel Hilbert Space.
However, so far, the emphasis has been on batch techniques. It
is only recently, that online techniques have been considered in
the context of adaptive signal processing tasks. Moreover,these
efforts have only been focussed on real valued data sequences. To
the best of our knowledge, no adaptive kernel-based strategy has
been developed, so far, for complex valued signals. Furthermore,
although the real reproducing kernels are used in an increasing
number of machine learning problems, complex kernels have not,
yet, been used, in spite of their potential interest in applications
that deal with complex signals, with Communications being a
typical example. In this paper, we present a general framework to
attack the problem of adaptive filtering of complex signals,using
either real reproducing kernels, taking advantage of a technique
called complexification of real RKHSs, or complex reproducing
kernels, highlighting the use of the complex gaussian kernel.

In order to derive gradients of operators that need to be
defined on the associated complex RKHSs, we employ the
powerful tool of Wirtinger’s Calculus, which has recently at-
tracted attention in the signal processing community. Wirtinger’s
calculus simplifies computations and offers an elegant toolfor
treating complex signals. To this end, in this paper, the notion
of Wirtinger’s calculus is extended, for the first time, to include
complex RKHSs and use it to derive several realizations of the
Complex Kernel Least-Mean-Square (CKLMS) algorithm. Ex-
periments verify that the CKLMS offers significant performa nce
improvements over several linear and nonlinear algorithms, when
dealing with nonlinearities.

I. I NTRODUCTION

Processing in Reproducing Kernel Hilbert Spaces
(RKHSs), in the context of online learning, is gaining

in popularity within the Machine Learning and Signal
Processing communities [1]–[6]. The main advantage of
mobilizing the tool of RKHSs is that the original nonlinear
task is “transformed” into a linear one, which can be solved
by employing an easier “algebra”. Moreover, different types
of nonlinearities can be treated in a unifying way, with no
effect on the mathematical derivation of the algorithms, except
at the final implementation stage. The main concepts of this
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procedure can be summarized in the following two steps: 1)
Map the finite dimensionality input data from the input space
F (usuallyF ⊂ Rν) into a higher dimensionality (possibly
infinite) RKHS H and 2) Perform a linear processing (e.g.,
adaptive filtering) on the mapped data inH. The procedure is
equivalent with a non-linear processing (non-linear filtering)
in F .

An alternative way of describing this process is through the
popularkernel trick [7], [8]: Given an algorithm, which can
be formulated in terms of dot products, one can construct an
alternative algorithm by replacing each one of the dot products
with a positive definite kernelκ. The specific choice of kernel
implicitly defines a RKHS with an appropriate inner product.
Furthermore, the choice of kernel also defines the type of
nonlinearity that underlies the model to be used. The main
representatives of this class of algorithms are the celebrated
support vector machines(SVMs), which have dominated the
research in machine learning over the last decade [9]. Besides
SVMs and the more recent applications in adaptive filtering,
there is a plethora of other scientific domains that have
gained from adopting kernel methods (e.g., image processing
and denoising [10], [11], principal component analysis [12],
clustering [13], e.t.c.).

In classification tasks (which have been the dominant ap-
plications of kernel methods) the use of complex reproducing
kernels is meaningless, since no arrangement can be derivedin
complex domains and the necessary separating hypersurfaces
cannot be defined. Consequently, all known kernel based
applications, as they emerged from the specific background,
use real-valued kernels and they are able to deal with real
valued data sequences only. To our knowledge, no kernel-
based strategy has been developed, so far, that is able to
effectively deal with complex valued signals.

In this paper, we present a general framework to address
the problem of adaptive filtering of complex signals, us-
ing either real reproducing kernels, taking advantage of a
technique calledcomplexificationof real RKHSs, or com-
plex reproducing kernels, highlighting mostly the use of the
complex gaussian kernel. Although the real gaussian RBF
kernel has become quite popular and it has been used in
many applications, the complex gaussian RBF kernel, while
known to the mathematicians (especially those working on
Reproducing Kernel Hilbert Spaces or Functional Analysis), it
has rather remained in obscurity in the Machine Learning and
Signal Processing communities. Even though the presented
framework has a broad range and may be applied to generalize
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a wide variety of kernel methods to the complex domain, this
work focuses on the recently developed Kernel LMS (KLMS)
[1], [14].

To compute the gradients of cost functions that are defined
on the complex RKHSs, the principles of Wirtinger’s calculus
are employed. Wirtinger’s calculus [15] has recently attracted
attention in the signal processing community, mainly in the
context of complex adaptive filtering [16]–[23], as a means
of computing, in an elegant way, gradients of real valued
cost functions defined on complex domains (Cν). To this
end, the main ideas and theorems of Wirtinger’s calculus are
generalized to general complex Hilbert spaces for the first
time.

To summarize, the main contributions of this paper are:
a) the development of a wide framework that allows real-
valued kernel algorithms to be extended to treat complex data
effectively, taking advantage of a technique calledcomplex-
ification of real RKHSs, b) to elevate from obscurity the
complex Gaussian kernel as a tool for kernel based adaptive
processing of complex signals, c) the extension ofWirtinger’s
Calculus in complex RKHSs as a means for an elegant and
efficient computation of the gradients, which are involved
in the derivation of adaptive learning algorithms, and d) the
development of several realizations of the Complex Kernel
LMS (CKLMS) algorithm, by exploiting the extension of
Wirtinger’s calculus and the generated complex RKHSs.

The paper is organized as follows. We start with an introduc-
tion to RKHSs in Section II, which includes real and complex
kernels, before we briefly review the KLMS algorithm in
Section III. In Section IV, we describe the complexification
procedure of a real RKHS, that provides a framework to
develop complex kernel methods, based on popular real valued
reproducing kernels (e.g., gaussian, polynomial, e.t.c.). A brief
introduction on Wirtinger’s Calculus in finite dimensional
spaces can be found in Section V. The main notions of the
extended Wirtinger’s Calculus on general Hilbert spaces are
summarized in Section VI and the CKLMS is developed
thereafter in Section VII. Finally, experimental results and
conclusions are provided in Sections VIII and IX. Throughout
the paper, we will denote the set of all integers, real and
complex numbers byN, R andC respectively. Vector or matrix
valued quantities appear in boldfaced symbols.

II. REPRODUCINGKERNEL HILBERT SPACES

In this section, we briefly describe the theory of Reproduc-
ing Kernel Hilbert Spaces. Since we are interested on both
real and complex kernels, we recall the basic facts on RKHS
associated with a general fieldF, which can be eitherR or C.
However, we highlight the basic differences between the two
cases. The material presented here may be found with more
details in [24] and [25].

A. Basic Definitions

Given a functionκ : X × X → F and x1, . . . , xN ∈ X ,
the matrix1 K = (Ki,j)

N with elementsKi,j = κ(xi, xj), for

1The term(Ki,j)N denotes a squareN ×N matrix.

i, j = 1, . . . , N , is called theGram matrix(or kernel matrix)
of κ with respect tox1, . . . , xN . A Hermitian matrixK =
(Ki,j)

N satisfying

cH ·K · c =
N,N
∑

i=1,j=1

c∗i cjKi,j ≥ 0,

for all ci ∈ F, i = 1, . . . , N , where the notation∗ denotes the
conjugate element, is calledPositive Definite. In matrix anal-
ysis literature, this is the definition of a positive semidefinite
matrix. However, since this is a rather cumbersome term and
the distinction between positive definite and positive semidef-
inite matrices is not important in this paper, we employ the
term positive definite in the way presented here. Furthermore,
the term positive definite was introduced for the first time by
Mercer in the kernel context (see [26]). LetX be a nonempty
set. Then a functionκ : X ×X → F, which for all N ∈ N

and allx1, . . . , xN ∈ X gives rise to a positive definite Gram
matrixK, is called aPositive Definite Kernel. In the following,
we will frequently refer to a positive definite kernel simplyas
kernel.

Next, consider a linear classH of complex valued functions
f defined on a setX . Suppose further, that inH we can
define an inner product〈·, ·〉H with corresponding norm‖ ·‖H
and thatH is complete with respect to that norm, i.e.,H
is a Hilbert space. We callH a Reproducing Kernel Hilbert
Space (RKHS), if for all y ∈ X the evaluation functional
Ty : H → F : Ty(f) = f(y) is a linear continuous (or,
equivalently, bounded) operator. If this is true, then by the
Riesz’s representation theorem, for ally ∈ X there is a
function gy ∈ H such thatTy(f) = f(y) = 〈f, gy〉H. The
function κ : X × X → F : κ(x, y) = gy(x) is called
a reproducing kernelof H. It can be easily proved that the
functionκ is a positive definite kernel.

Alternatively, we can define a RKHS as a Hilbert spaceH
for which there exists a functionκ : X × X → F with the
following two important properties:

1) For everyx ∈ X , κ(·, x) belongs toH.
2) κ has the so calledreproducing property, i.e.,

f(x) = 〈f, κ(·, x)〉H, for all f ∈ H, (1)

in particularκ(x, y) = 〈κ(·, y), κ(·, x)〉H.

It has been shown (see [27]) that to every positive definite
kernelκ there corresponds one and only one class of functions
H with a uniquely determined inner product in it, forming
a Hilbert space and admittingκ as a reproducing kernel. In
fact, the kernelκ produces the entire spaceH, i.e., H =
span{κ(x, ·)|x ∈ X}2. The mapΦ : X → H : Φ(x) = κ(·, x)
is called thefeature mapof H. Recall, that in the case of
complex Hilbert spaces (i.e.,F = C) the inner product is
sesqui-linear (i.e., linear in one argument and antilinearin the
other) and Hermitian:

〈af + bg, h〉H = a〈f, h〉H + b〈g, h〉H,

〈f, ag + bh〉H = a∗〈f, g〉H + b∗〈f, h〉H,

〈f, g〉∗H = 〈g, f〉H,

2The overbar denotes the closure of the set.
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for all f, g, h ∈ H, and a, b ∈ C. In the real case, the
condition κ(x, y) = 〈κ(·, y), κ(·, x)〉H may be replaced by
κ(x, y) = 〈κ(·, x), κ(·, y)〉H. However, since in the complex
case the inner product is Hermitian, the aforementioned con-
dition is equivalent toκ(x, y) = (〈κ(·, x), κ(·, y)〉H)

∗. One
of the most important properties of RKHSs is that norm
convergence implies pointwise convergence. More precisely,
let {fn}n∈N ⊂ H be a sequence such thatlimn ‖fn − f‖ =
0, for some f ∈ H. Then, the continuity ofTx gives
limn fn(x) = limn Tx(fn) = Tx(f) = f(x), for all x ∈ X .

Although, the underlying theory has been developed by
the mathematicians for general complex reproducing kernels
and their associated RKHSs, only the real kernels have been
considered by the machine learning community. One of the
most widely used kernel is theGaussian RBF, i.e.,

κσ,Rd(x,y) := exp

(

−
∑d

i=1(xi − yi)
2

σ2

)

, (2)

defined forx,y ∈ Rd, whereσ is a free positive parameter.
Another popular kernel is thepolynomial kernel: κd(x,y) :=
(

1 + xTy
)d

, for d ∈ N. Many more can be found in the
related literature [7]–[9].

Complex reproducing kernels, that have been extensively
studied by the mathematicians, are, among others, theSzego
kernels, i.e, κ(z, w) = 1

1−w∗z
, for Hardy spaces on the unit

disk, and the Bergman kernels, i.e.,κ(z, w) = 1
(1−w∗z)2 , for

Bergman spaces on the unit disk, where|z|, |w| < 1 [25].
In the following, we discuss another complex kernel that has
remained relatively unknown in the Machine Learning and
Signal Processing societies.

B. The Complex Gaussian Kernel

Consider the complex valued function

κσ,Cd(z,w) := exp

(

−
∑d

i=1(zi − w∗
i )

2

σ2

)

, (3)

defined onCd × Cd, wherez,w ∈ Cd, zi denotes thei-th
component of the complex vectorz ∈ Cd and exp is the
extended exponential function in the complex domain. It can
be shown thatκσ,Cd is a complex valued kernel, which we call
the complex Gaussian kernelwith parameterσ. Its restriction
κσ :=

(

κσ,Cd

)

|Rd×Rd is the well knownreal Gaussian kernel.
An explicit description of the RKHSs of these kernels, together
with some important properties can be found in [28].

III. K ERNEL LEAST MEAN SQUARE ALGORITHM

In a typical LMS filter the goal is to learn a lin-
ear input-output mappingf : X → R : f(x) =
wTx, X ⊂ Rν , based on a sequence of examples
(x(1), d(1)), (x(2), d(2)), . . . , (x(N), d(N)), so that to min-
imize the mean square error,E

[

|d(n)−wTx(n)|2
]

. To this
end, the gradient descent rationale is employed and at each
time instant,n = 1, 2, . . . , N , the gradient of the mean
square error, i.e.,−2E[e(n)x(n)], is estimated via its cur-
rent measurement, i.e.,̂E[e(n)x(n)] = e(n)x(n), where
e(n) = d(n)−w(n−1)Tx(n) is the a-priori error at instance

n = 2, . . . , N . It takes a few lines of elementary algebra to
deduce that the update of the unknown vector parameter is:
w(n) = w(n − 1) + µe(n)x(n), whereµ is the parameter
controlling the step update. If we take the initial value ofw as
w(0) = 0, then the repeated application of the update equation
yields:

w(n) = µ

n
∑

k=1

e(k)x(k) (4)

Hence, for the filter output at instancen we have:

d̂(n) = w(n− 1)Tx(n) = µ

n−1
∑

k=1

e(k)x(k)Tx(n), (5)

for n = 1, 2, . . . , N . Equation (5) is expressed in terms of
inner products only, hence it allows for the application of the
kernel trick. Thus, the filter output of the KLMS at instance
n is

d̂(n) = 〈x(n),w(n− 1)〉H = µ

n−1
∑

k=1

e(k)κ (x(n),x(k)) ,

(6)

while w(n) = µ

n
∑

k=1

e(k)κ(·,x(k)), (7)

for n = 1, 2, . . . , N .
Another, more formal, way of developing the KLMS is the

following. First, we transform the input spaceX to a high
dimensional feature spaceH, through the (implicit) mapping
Φ : X → H, Φ(x) = κ(·,x). Thus, the training examples
become(Φ(x(1)), d(1)), . . . , (Φ(x(N)), d(N)). We apply the
LMS procedure on the transformed data, with the linear filter
output d̂(n) = 〈Φ(x(n)),w〉H. The model〈Φ(x),w〉H is
more representative than the simplewTx, since it includes
the nonlinear modeling through the presence of the kernel.
The objective now becomes to minimize the cost function
E
[

|d(n)− 〈Φ(x(n)),w〉H|2
]

(see [29]). Using the notion of
the Fréchet derivative [29]–[31], which has to be mobilized,
since the dimensionality of the RKHS may be infinite, we are
able to derive the gradient of the aforementioned cost function
with respect tow, if we estimate it by its current measure-
ment |d(n) − 〈Φ(x(n)),w〉|2. Thus the respective gradient
is −2e(n)Φ(x(n)). It has to be emphasized, that noww is
not a vector, but a function, i.e., a point in the linear Hilbert
space. It turns out that the update of the KLMS is given by
w(n) = w(n−1)+µe(n)Φ(x(n)), wheree(n) = d(n)−d̂(n).
From this update, following the same procedure as in LMS and
applying the reproducing property, we obtain equations (6)and
(7), which are at the core of the KLMS algorithm. More details
and the algorithmic implementation may be found in [14].

Note that in a number of attempts to kernelize known
algorithms, that are cast in inner products, the kernel trick is,
usually, used in a ”black box” rationale, without consideration
of the problem in the RKH space, in which the (implicit)
processing is carried out. Such an approach, often, does not
allow for a deeper understanding of the problem, especially
if a further theoretical analysis is required. Moreover, inour
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case, such a “blind” application of the kernel trick on a
standard complex LMS form, can only lead to spaces defined
by complex kernels, as it will become clear soon. Complex
RKH spaces, that are built around complexification of real
kernels, do not result as a direct application of the standard
kernel trick.

IV. COMPLEXIFICATION OF REAL REPRODUCINGKERNEL

HILBERT SPACES

To generalize the kernel adaptive filtering algorithms on
complex domains, we need a universal framework regarding
complex RKHSs. A first straightforward approach is to use
directly a complex RKHS, using one of the complex kernels
given in section II. In this section, we present an alterna-
tive simple technique calledcomplexificationof real RKHSs,
which has the advantage of allowing modeling in complex
RKHSs using popular well-established and well understood,
from a performance point of view, real kernels (e.g., gaussian,
polynomial, e.t.c.).

Let X ⊆ Rν . Define X2 ≡ X × X ⊆ R2ν and X =
{x+ iy,x,y ∈ X} ⊆ Cν equipped with a complex product
structure. LetH be a real RKHS associated with a real kernelκ
defined onX2×X2 and let〈·, ·〉H be its corresponding inner
product. Then, everyf ∈ H can be regarded as a function
defined on eitherX2 or X, i.e., f(z) = f(x+ iy) = f(x,y).

Next, we defineH2 = H×H. It is easy to verify thatH2

is also a Hilbert Space with inner product

〈f , g〉H2 = 〈f1, g1〉H + 〈f2, g2〉H, (8)

for f = (f1, f2), g = (g1, g2). Our objective is to enrichH2

with a complex structure. We address this problem using the
complexification of the real RKHSH. To this end, we define
the spaceH = {f = f1+ if2; f1, f2 ∈ H} equipped with the
complex inner product:

〈f , g〉H = 〈f1, g1〉H + 〈f2, g2〉H + i (〈f2, g1〉H − 〈f1, g2〉H) ,

for f = f1+ if2, g = g1+ ig2. Hence,f , g : X ⊆ Cν → C. It
is not difficult to verify thatH is a complex RKHS with kernel
κ [25]. We call H the complexification ofH. It can readily
be seen, that, althoughH is a complex RKHS, its respective
kernel is real (i.e., its imaginary part is equal to zero).

To complete the presentation of the required framework for
working on complex RKHSs using this rationale, we need a
technique to implicitly map the samples data from the complex
input space to the complexified RKHSH. This can be done
using the simple rule:

Φ(z) = Φ(x+ iy) = Φ(x,y) = Φ(x,y) + iΦ(x,y), (9)

whereΦ is the feature map of the real reproducing kernelκ,
i.e., Φ(x,y) = κ(·, (x,y)). It must be emphasized, thatΦ
is not the feature map associated with the complex RKHSH.
Furthermore, the employed kernel is a real one. Therefore, the
algorithms derived using this approach cannot be reproduced,
if one blindly applies the kernel trick using any complex
kernel. However, observe that:

〈Φ(z),Φ(z′)〉H = 2〈Φ(x,y),Φ(x′,y′)〉H
= 2κ((x,y), (x′,y′)).

This relation implies that the complexification procedure is
equivalent with the followingcomplexified real kernel trick:
Given an algorithm, which is formulated in terms of complex
dot products (i.e,wHz, wherez = x+ iy, w = w1 + iw2),
one can construct an alternative algorithm by replacing each
one of the complex dot products with a positive definitereal
kernelκ, with arguments the extended real vectors ofz and
w (i.e., κ((x,y), (w2,w2))).

V. W IRTINGER’ S CALCULUS ON C

Wirtinger’s calculus [15] is enjoying increasing popularity
in the signal processing community mainly in the context of
complex adaptive filtering [16]–[23], as a means to compute,in
an elegant way, gradients of real valued cost functions thatare
defined on complex domains (C

ν). The Cauchy-Riemann con-
ditions dictate that such functions are not holomorphic (except
from the case where the function is a constant) and therefore
the complex derivative cannot be used. Instead, if we consider
that the cost function is defined on a Euclidean domain with a
double dimensionality (R2ν), then the real derivatives may be
employed. The price of this approach is that the computations
may become cumbersome and tedious. Wirtinger’s calculus
provides an alternative equivalent formulation, that is based
on simple rules and principles and which bears a great resem-
blance to the rules of the standard complex derivative. In this
section, we present the main notions of Wirtinger’s calculus
for functions defined on complex domains. These ideas are,
subsequently, extended in section VI to include the case of
general complex Hilbert spaces.

Let f : C → C be a complex function defined on
C. Obviously, such a function may be regarded as either
defined onR2 or C (i.e., f(z) = f(x + iy) = f(x, y)).
Furthermore, it may be regarded as either a complex valued
function, f(x, y) = u(x, y) + iv(x, y) or as a vector valued
function f(x, y) = (u(x, y), v(x, y)). We will say thatf is
differentiable in the real senseif u andv are differentiable. It
turns out that, when the complex structure is considered, the
real derivatives may be described using an equivalent and more
elegant formulation, which bears a surprising resemblance
with the complex derivative. In fact, if the functionf is
differentiable in the complex sense(i.e. the complex derivative
exists), the developed derivatives coincide with the complex
ones. Although this methodology is known for some time in
the German speaking countries and it has been applied to
practical applications [32], [33], only recently has attracted
the attention of the signal processing community, mostly inthe
context of works that followed Picinbono’s paper on widely
linear estimation filters [16].

The Wirtinger’s derivative(or W-derivativefor short) off
at a pointc is defined as follows

∂f

∂z
(c) =

1

2

(

∂f

∂x
(c)− i

∂f

∂y
(c)

)

=
1

2

(

∂u

∂x
(c) +

∂v

∂y
(c)

)

+
i

2

(

∂v

∂x
(c)− ∂u

∂y
(c)

)

.

(10)
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The conjugate Wirtinger’s derivative(or CW-derivativefor
short) off at c is defined by:

∂f

∂z∗
(c) =

1

2

(

∂f

∂x
(c) + i

∂f

∂y
(c)

)

=
1

2

(

∂u

∂x
(c)− ∂v

∂y
(c)

)

+
i

2

(

∂v

∂x
(c) +

∂u

∂y
(c)

)

. (11)

The following properties can be proved [21], [34], [35]:

1) If f has a Taylor series expansion with respect toz (i.e.,
it is holomorphic) aroundc, then ∂f

∂z∗
(c) = 0.

2) If f has a Taylor series expansion with respect toz∗

aroundc, then ∂f
∂z

(c) = 0.

3)
(

∂f
∂z

(c)
)∗

= ∂f∗

∂z∗
(c).

4)
(

∂f
∂z∗

(c)
)∗

= ∂f
∂z∗

(c).
5) Linearity: If f, g are differentiable in the real sense atc

andα, β ∈ C, then

∂(αf + βg)

∂z
(c) = α

∂f

∂z
(c) + β

∂g

∂z
(c),

∂(αf + βg)

∂z∗
(c) = α

∂f

∂z∗
(c) + β

∂g

∂z∗
(c)

6) Product Rule: Iff , g are differentiable in the real sense
at c, then

∂(f · g)
∂z

(c) =
∂f

∂z
(c)g(c) + f(c)

∂g

∂z
(c),

∂(f · g)
∂z∗

(c) =
∂f

∂z∗
(c)g(c) + f(c)

∂g

∂z∗
(c).

7) Division Rule: Iff , g are differentiable in the real sense
at c andg(c) 6= 0, then

∂( f
g
)

∂z
(c) =

∂f
∂z

(c)g(c)− f(c)∂g
∂z
(c)

g2(c)
,

∂( f
g
)

∂z∗
(c) =

∂f
∂z∗

(c)g(c)− f(c) ∂g
∂z∗

(c)

g2(c)
.

8) Chain Rule: Iff is differentiable in the real sense atc
andg is differentiable in the real sense atf(c), then

∂g ◦ f
∂z

(c) =
∂g

∂z
(f(c))

∂f

∂z
(c) +

∂g

∂z∗
(f(c))

∂f∗

∂z
(c),

∂g ◦ f
∂z∗

(c) =
∂g

∂z
(f(c))

∂f

∂z∗
(c) +

∂g

∂z∗
(f(c))

∂f∗

∂z∗
(c).

In view of the aforementioned properties, one might easily
compute the W and CW derivatives of any complex functionf ,
which is written in terms ofz andz∗, following the following
simple tricks:

• To compute the W-derivative of a functionf ,
which is expressed in terms ofz and z∗, apply
the usual differentiation rules consideringz∗ as
a constant.

• To compute the CW-derivative of a functionf ,
which is expressed in terms ofz and z∗, apply
the usual differentiation rules consideringz as
a constant.

Note that any complex functionf(z), which is differentiable
in the real sense, can be cast in terms ofz andz∗. For example,

if the functionf(z) = f(x+iy) = f(x, y) is given in terms of
x andy, replacingx by (z+ z∗)/2 andy by (z− z∗)/2 gives
the result. It should be emphasized, that these statements must
be regarded as a simple computational trick rather than as a
rigorous mathematical rule. This trick works well due to the
aforementioned properties. Nonetheless, special care should
be considered whenever these tricks are applied. For example,
given the functionf(z) = |z|2, we might conclude that∂f

∂z∗
=

0, since if we considerz as a constant, thenf(z) is also
a constant. However, one might argue that since there isn’t
any rule regarding the complex norm, this rationale leads to
an error. Undeniably, if one recastsf as f(z) = zz∗, then
one concludes that∂f

∂z∗
= z and ∂f

∂z
= z∗. Similar rules and

principles hold for functions defined onCν [34].

VI. EXTENSION OFWIRTINGER’ S CALCULUS TO

GENERAL HILBERT SPACES

To apply minimization algorithms on real valued operators
defined on complex RKHSs, we need to compute the asso-
ciated gradients. To this end, in this section, we generalize
the main ideas and results of Wirtinger’s calculus on general
Hilbert spaces. We begin with a brief review of theFréchet
derivative, which generalizes differentiability to Hilbert spaces
and which will be the basis for our discussion.

A. Fréchet Derivatives

Since Fréchet differentiability is not the mainstream of
mathematical tools used in the Signal Processing and Machine
Learning communities, we give here some basic definitions for
the sake of clarity. Consider a Hilbert spaceH over the field
F (typically R or C). The operatorT : H → F ν is said to be
Fréchet differentiableat f0, if there exists a linear continuous
operatorW = (W1,W2, . . . ,Wν) : H → Fν such that

lim
‖h‖H→0

‖T (f0 + h)− T (f0)−W (h)‖F ν

‖h‖H
= 0, (12)

where ‖ · ‖H =
√

〈·, ·〉H is the induced norm of the cor-
responding Hilbert Space. Note thatF ν is considered as a
Banach space under the Euclidean norm. The linear operator
W is called theFréchet derivativeand is usually denoted by
dT (f0) : H → F ν . Observe that this definition is valid not
only for Hilbert spaces, but for general Banach spaces too.
However, since we are mainly interested at Hilbert spaces, we
present the main ideas in this context. It can be proved that if
such a linear continuous operatorW can be found, then it is
unique (i.e., the derivative is unique) [30]. In the specialcase
whereν = 1 (i.e., the operatorT takes values onF ) using
the Riesz’s representationtheorem, we may replace the linear
continuous operatorW with an inner product. Therefore, the
operatorT : H → F is said to beFréchet differentiableat
f0, iff there exists aw ∈ H , such that

lim
‖h‖H→0

T (f0 + h)− T (f0)− 〈h,w〉H
‖h‖H

= 0, (13)

where 〈·, ·〉H is the dot product of the Hilbert spaceH and
‖ · ‖H is the induced norm. The elementw∗ is usually called
the gradient ofT at f0 and it is denoted byw∗ = ∇T (f0).
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For a general vector valued operatorT = (T1, . . . , Tν) :
H → F ν , we may easily derive that ifT is differentiable at
f0, thenTι is differentiable atf0, for all ι = 1, 2, . . . , ν, and
that

dT (f0)(h) =







〈h,∇T1(f0)
∗〉H

...
〈h,∇Tν(f0)

∗〉H






. (14)

To prove this claim, consider that sinceT is differentiable,
there exists a continuous linear operatorW such that

lim
‖h‖H→0

‖T (f0 + h)− T (f0)−W (h)‖F ν

‖h‖H
= 0 ⇔

lim
‖h‖H→0

(

ν
∑

ι=1

|Tι(f0 + h)− Tι(f0)−Wι(h)|2F
‖h‖2H

)

= 0,

for all ι = 1, . . . , ν. Thus,

lim
‖h‖H→0

(

Tι(f0 + h)− Tι(f0)−Wι(h)

‖h‖H

)

= 0,

for all ι = 1, 2, ν. The Riesz’s representation theorem dictates
that sinceWι is a continuous linear operator, there existswι ∈
H , such thatWι(h) = 〈h,wι〉H , for all ι = 1, . . . , ν. This
proves thatTι is differentiable atf0 and thatw∗

ι = ∇Tι(f0),
thus equation (14) holds. The converse is proved similarly.

The notion ofFréchet differentiabilitymay be extended to
include also partial derivatives. Consider the operatorT :
Hµ → F defined on the Hilbert spaceHµ with corresponding
inner product:

〈f , g〉Hµ =

µ
∑

ι=1

〈fι, gι〉H ,

wheref = (f1, f2, . . . fµ), g = (g1, g2, . . . gµ). T (f) is said
to beFréchet differentiableat f0 with respect tofι, iff there
exists aw ∈ H , such that

lim
‖h‖H→0

T (f0 + [h]ι)− T (f0)− 〈[h]ι, w〉H
‖h‖H

= 0, (15)

where [h]ι = (0, 0, . . . , 0, h, 0, . . . , 0), is the element ofHµ

with zero entries everywhere, except at placeι. The element
w∗ is called the gradient ofT at f0 with respect tofι and it
is denoted byw∗ = ∇ιT (f0). The Fréchet partial derivative
at f0 with respect tofι is denoted by∂T

∂fι
(f0),

∂T
∂fι

(f0)(h) =
〈[h]ι, w〉H.

Although it will not be used here, it is interesting to note,
that it is also possible to define Fréchet derivatives of higher
order and a corresponding Taylor’s series expansion. In this
context, then-th Fréchet derivative ofT at f0, denoted as
dnT (f0), is a multilinear3 map. If T has Fréchet derivatives
of any order, it can be expanded as a Taylor series [36], i.e.,

T (f0 + h) =

∞
∑

n=0

1

n!
dnT (f0)(h,h, . . . ,h). (16)

In relative literature the termdnT (c)(h,h, . . . ,h) is often
replaced bydnT (c) ·hn, which it denotes that the multilinear
mapdnT (c) is applied to(h,h, . . . ,h).

3A function is called multilinear, if it is linear in each variable.

B. Complex Hilbert spaces

Let H be a real Hilbert space with inner product〈·, ·〉H
andH2, H the Hilbert spaces defined as shown in section IV.
In the following, the complex structure ofH will be used to
derive derivatives similar to the ones obtained from Wirtinger’s
calculus onC.

Consider the functionT : A ⊆ H → C, T (f ) =
T (uf + ivf ) = Tr(uf , vf ) + iTi(uf , vf ), defined on an
open subsetA of H, whereuf , vf ∈ H and Tr, Ti are real
valued functions defined onH2. Any such function,T , may be
regarded as defined either on a subset ofH, or on a subset of
H2. Moreover,T may be regarded either as a complex valued
function, or as a vector valued function, which takes valuesin
R2. Therefore, we may equivalently write:

T (f ) = T (uf + ivf ) = Tr(uf , vf ) + iTi(uf , vf ),

T (f ) = (Tr(uf , vf ), Ti(uf , vf )) .

In the following, we will often change the notation according
to the specific problem and consider any element off ∈ H

defined either asf = uf+ivf ∈ H, or asf = (uf , vf ) ∈ H2.
In a similar manner, any complex number may be regarded as
either an element ofC, or as an element ofR2. We say that
T is Fréchet complex differentiableat c ∈ H, if there exists
w ∈ H such that:

lim
‖h‖H→0

T (c + h)− T (c)− 〈h,w〉H
‖h‖H

= 0. (17)

Thenw∗ is called thecomplex gradientof T at c and it is
denoted asw∗ ≡ ∇T (c). The Fréchet complex derivative of
T at c is denoted asdT (c)(h) = 〈h,w〉H. This definition,
although similar with the typical Fréchet derivative, exploits
the complex structure ofH. More specifically, the complex
inner product, that appears in the definition, forces a great
deal of structure onT . Similarly to the case of ordinary
complex functions, it is this simple fact that gives birth to
all the important strong properties of the complex derivative.
For example, it can be proved, that ifdT (c) exists, then so
doesdnT (c), for n ∈ N. If T is differentiable at anyc ∈ A,
T is called Fréchet holomorphicin A, or Fréchet complex
analytic in A, in the sense that it can be expanded as a Taylor
series, i.e.,

T (c+ h) =

∞
∑

n=0

1

n!
dnT (c)(h,h, . . . ,h). (18)

The proof of this statement is out of the scope of this paper.
The interested reader may dig deeper on this subject by
referring to [36]. We begin our study by exploring the relations
between the complex Fréchet derivative and the real Fréchet
derivatives. In the following, we will say thatT is Fréchet
differentiable in the complex sense, if the complex derivative
exists, and thatT is Fréchet differentiable in the real sense, if
its real Fréchet derivative exists (i.e.,T is regarded as a vector
valued operatorT : H2 → H2). Similarly, the expression “T
is Fréchet complex analytic atc” means thatT is Fréchet
complex analytic at a neighborhood aroundc. We will say
that T is Fréchet real analytic, when bothTr andTi have a
Taylor’s series expansion in the real sense.
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Proposition VI.1. Let T : A ⊂ H → C be an operator such
that T (f ) = T (uf + ivf ) = T (uf , vf ) = Tr(uf , vf ) +
iTi(uf , vf ). If the Fréchet complex derivative ofT at a point
c ∈ A (i.e., dT (c) : H → C) exists, thenTr and Ti are
differentiable at the pointc = (c1, c1) = c1 + ic2, where
c1, c2 ∈ H. Furthermore,

∇uTr(c1, c2) = ∇vTi(c1, c2),∇vTr(c1, c2) = −∇uTi(c1, c2).
(19)

Equations (19) are theCauchy Riemann conditionswith
respect to the Fréchet notion of differentiability. Similar to
the simple case of complex valued functions, they provide
a necessary and sufficient condition, for a complex operator
T , that is defined onH, to be differentiable in the complex
sense, provided thatT is differentiable in the real sense. This
is explored in the following proposition.

Proposition VI.2. If the operatorT : A ⊆ H → C, T (f) =
Tr(f )+ iTi(f ), wheref = uf + ivf , is Fréchet differentiable
in the real sense at a point(c1, c2) ∈ H2 and the Fŕechet
Cauchy-Riemann conditions hold:

∇uTr(c1, c2) = ∇vTi(c1, c2),∇vTr(c1, c2) = −∇uTi(c1, c2),
(20)

thenT is differentiable in the complex sense at the pointc =
(c1, c2) = c1 + c2i ∈ H.

Proof: see Appendix A.
If the Fréchet Cauchy Riemann conditions are not satisfied

for an operatorT , then the Fréchet complex derivative does
not exist and the function cannot be expressed in terms ofh,
as in the case of Fréchet complex differentiable functions(see
equation 18). Nevertheless, ifT is Fréchet differentiable in
the real sense (i.e.,Tr andTi are Fréchet differentiable), we
may still find a form of Taylor’s series expansion by utilizing
the extension of Wirtinger’s calculus. It can be shown (see the
proof of proposition VI.2 in Appendix A), that:

T (c+ h) =T (c) +
1

2

〈

h, (∇uT (c)− i∇vT (c))∗
〉

H
(21)

+
1

2

〈

h∗, (∇uT (c) + i∇vT (c))
∗〉

H
+ o(‖h‖H).

One may notice that in this case the associated Taylor’s
expansion is casted in terms of bothh and h∗. This can
be generalized for higher order Taylor’s expansion formulas
by following the same rationale. Observe also that, ifT is
Fréchet complex differentiable, this relation degenerates (due
to the Cauchy Riemann conditions) to the respective Taylor’s
expansion formula (i.e., (18)). In this context, the following
definitions come naturally.

We define theFréchet Wirtinger’s gradient(or W-gradient
for short) ofT at c as

∇fT (c) =
1

2
(∇1T (c)− i∇2T (c))

=
1

2
(∇uTr(c) +∇vTi(c)) (22)

+
i

2
(∇uTi(c)−∇vTr(c)) ,

and theFréchet Wirtinger’s derivative(or W -derivative) as
∂T
∂f

(c) : H → C, such that∂T
∂f

(c)(h) = 〈h,∇fT (c)∗〉H.
Consequently, theFréchet conjugate Wirtinger’s gradient(or
CW-gradientfor short) and theFréchet conjugate Wirtinger’s
derivative(or CW-derivative) of T at c are defined by:

∇f∗T (c) =
1

2
(∇1T (c) + i∇2T (c)) (23)

=
1

2
(∇uTr(c)−∇vTi(c))

+
i

2
(∇uTi(c) +∇vTr(c)) ,

and ∂T
∂f∗ (c) : H → C, such that ∂T

∂f∗ (c)(h) =

〈h, (∇f∗T (c))
∗〉H. Note, that both the W-derivative and the

CW-derivative exist, ifT is Fréchet differentiable in the real
sense. In view of these new definitions, equation (21) may
now be recasted as follows

T (c+ h) =T (c) +
〈

h, (∇fT (c))
∗〉

H
(24)

+
〈

h∗, (∇f∗T (c))
∗〉

H
+ o(‖h‖H). (25)

From these definitions, several properties can be derived:

1) If T (f ) is f -holomorphic atc (i.e., it has a Taylor series
expansion with respect tof at c), then its Fréchet W-
derivative atc degenerates to the standard Fréchet com-
plex derivative and its Fréchet CW-derivative vanishes,
i.e., ∇f∗T (c) = 0.

2) If T (f ) is f
∗-holomorphic atc (i.e., it has a Tay-

lor series expansion with respect tof∗ at c), then
∇fT (c) = 0.

3) The first order Taylor expansion aroundf ∈ H is given
by

T (f + h) =T (f ) + 〈h, (∇fT (f ))
∗〉H

+ 〈h∗, (∇f∗T (f ))∗〉H.

4) If T (f ) = 〈f ,w〉H, then∇fT (c) = w∗, ∇f∗T (c) =
0, for everyc.

5) If T (f) = 〈f∗,w〉H, then∇fT (c) = 0, ∇f∗T (c) =
w∗, for everyc.

6) Linearity: If T ,S : H → C are Fréchet differentiable in
the real sense atc ∈ H andα, β ∈ C, then

∇f (αT + βS)(c) = α∇fT (c) + β∇fS(c)

∇f∗(αT + βS)(c) = α∇f∗T (c) + β∇f∗S(c).

A complete list of the derived properties, together with the
proofs of the most important ones, are given in Appendix B.

An important consequence of the previous properties is that
if T is a real valued operator defined onH, then(∇fT (c))

∗ =
∇f∗T (c), and its first order Taylor’s expansion is given by:

T (f + h) = T (f) + 〈h, (∇fT (f))
∗〉H + 〈h∗, (∇f∗T (f))

∗〉H
= T (f) + 〈h,∇f∗T (f )〉H + (〈h,∇f∗T (f)〉H)∗

= T (f) + 2 · < [〈h,∇f∗T (f)〉H] .

However, in view of the Cauchy Riemann inequality we have:

< [〈h,∇f∗T (f)〉H] ≤ |〈h,∇f∗T (f)〉H|
≤ ‖h‖H · ‖∇f∗T (f)‖H.
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The equality in the above relationship holds ifh � ∇f∗T
(where the notation� denotes thath and∇f∗T have the same
direction, i.e., there is aλ > 0, such thath = λ∇f∗T ). Hence,
the direction of increase ofT is ∇f∗T (f). Therefore, any
gradient descent based algorithm minimizingT (f) is based
on the update scheme:

fn = fn−1 − µ · ∇f∗T (fn−1). (26)

Assuming differentiability ofT , a standard result from
Fréchet real calculus states that a necessary condition for a
pointc to be an optimum (in the sense thatT (f) is minimized
or maximized) is that this point is a stationary point ofT ,
i.e., the Fréchet partial derivatives ofT at c vanish. In the
context of Wirtinger’s calculus, we have the following obvious
corresponding result.

Proposition VI.3. If the functionT : A ⊆ H → R is Fréchet
differentiable atc in the real sense, then a necessary condition
for a pointc to be a local optimum (in the sense thatT (c) is
minimized or maximized) is that either the Fréchet W, or the
Fréchet CW derivative vanishes.

Proof: Observe that ifT is real valued, the Wirtinger
derivatives take the form∇fT (c) =

1
2 (∇uT (c) − i∇vT (c))

and ∇f∗T (c) = 1
2 (∇uT (c) + i∇vT (c)). If c is a local

optimum of T then ∇uT (c) = ∇vT (c) = 0 and thus
∇fT (c) = ∇f∗T (c) = 0. Note, that for real valued functions
the W and the CW derivatives constitute a conjugate pair.
Thus, if the W derivative vanishes, then the CW derivative
vanishes too. The converse is also true. This completes the
proof.

VII. C OMPLEX KERNEL LEAST MEAN SQUARES -
CKLMS

In order to illustrate how the proposed framework may be
applied to problems of complex signal processing, we present
two realizations of the Kernel Least Mean Squares (KLMS)
algorithm for complex data. The first scheme (CKLMS1)
employs the complexification of real reproducing kernels (see
section IV), while the second one uses pure complex kernels
(CKLMS2). Wirtinger’s calculus is exploited in both cases to
compute the necessary gradient updates.

A. Complex KLMS via complexification of real kernels -
CKLMS1

Consider the sequence of examples(z(1), d(1)),
(z(2), d(2)), . . . , (z(N), d(N)), where d(n) ∈ C,
z(n) ∈ V ⊂ Cν , z(n) = x(n) + iy(n), x(n),y(n) ∈ Rν ,
for n = 1, . . . , N . Consider, also, a real reproducing kernelκ
defined onX×X , X ⊆ R2ν , and letH be the corresponding
RKHS. We map the pointsz(n) to the RKHS H (H is
constructed as explained in section IV) using the mappingΦ:

Φ(z(n)) = Φ(z(n)) + iΦ(z(n))

= κ (·, (x(n),y(n))) + i · κ (·, (x(n),y(n))) ,

for n = 1, . . . , N , whereΦ is the feature map ofH. The
objective of the complex Kernel LMS is to design a filter,

w, with desired responsêd(n) = 〈Φ(z(n)),w〉H, so that to
minimizeE [Ln(w)], where

Ln(w) = |e(n)|2 = |d(n)− 〈Φ(z(n)),w〉H|2

= (d(n)− 〈Φ(z(n)),w〉H) (d(n)− 〈Φ(z(n)),w〉H)∗

= (d(n)− 〈w∗,Φ∗(z(n))〉H) (d(n)∗ − 〈w,Φ(z(n))〉H) ,

at each instancen. We then apply the complex LMS to the
transformed data, estimating the mean square error by its
current measurement̂E [Ln(w)] = Ln(w), using the rules
of Wirtinger’s calculus to compute the CW gradient, i.e.,
∇w∗Ln(w) = −e(n)∗ · Φ(z(n)). Therefore the CKLMS1
update rule becomes:

w(n) = w(n− 1) + µe(n)∗ ·Φ(z(n)), (27)

wherew(n) denotes the estimate at iterationn.
Assuming thatw(0) = 0, the repeated application of the

weight-update equation gives:

w(n) =w(n− 1) + µe(n)∗Φ(z(n))

=w(n− 2) + µe(n− 1)∗Φ(z(n− 1))

+ µe(n)∗Φ(z(n))

=µ

n
∑

k=1

e(k)∗Φ(z(k)). (28)

Thus, the filter output at iterationn becomes:

d̂(n) =〈Φ(z(n)),w(n− 1)〉H

=µ
n−1
∑

k=1

e(k)〈Φ(z(n)),Φ(z(k))〉H

=2µ

n−1
∑

k=1

<[e(k)]κ(z(n), z(k))

+ 2µ · i
n−1
∑

k=1

=[e(k)]κ(z(n), z(k)), (29)

where the evaluation of the kernel is done by replacing the
complex vectorsz(n), of C

ν with the corresponding real
vectors ofR2ν , i.e., z(n) = (x(n),y(n)).

It can readily be shown that, since the CKLMS1 is the
complex LMS in RKHS, the important properties of the LMS
(convergence in the mean, misadjustment, e.t.c.) carry over
to CKLMS1. Furthermore, we may also define a normalized
version, which we callNormalized Complex Kernel LMS
(NCKLMS1). The weight-update of the NCKLMS1 is given
by:

w(n) =w(n− 1) +
µ

2 · κ(z(n), z(n))e(n)
∗
Φ(z(n))

The NCKLMS1 algorithm is summarized in Algorithm 1. We
should emphasize that this formulation of the complex KLMS
cannot be derived following the usual “black box” rationaleof
the kernel trick, as it has already been pointed out in section
IV. The complexified real kernel trick can be used instead.

One might think, that modeling the desired response as
d̂(n) = 〈w(n − 1),Φ(z(n))〉H, provides an alternative
formulation for the CKLMS1 algorithm. In this case, the
CW gradient of the instantaneous square error is given by
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Algorithm 1 Normalized Complex Kernel LMS with com-
plexification of real kernels (NCKLMS1)

INPUT: (z(1), d(1)), . . . , (z(N), d(N))
OUTPUT: The expansion
w =

∑N
k=1 a(k)κ(·, z(k)) + i ·∑N

k=1 b(k)κ(·, z(k)).

Initialization: Set a = {}, b = {}, Z = {} (i.e.,
w = 0). Select the step parameterµ and the kernel
κ.

for n = 1 : N do
Compute the filter output:

d̂(n) =

n−1
∑

k=1

(a(k) + b(k)) · κ(z(n), z(k))

+ i
n−1
∑

k=1

(a(k)− b(k)) · κ(z(n), z(k)).

Compute the error:e(n) = d(n)− d̂(n).
γ = 2κ(z(n), z(n)).
a(n) = µ(<[e(n)] + =[e(n)])/γ.
b(n) = µ(<[e(n)]−=[e(n)])/γ.
Add the new centerz(n) to the list of centers, i.e., add
z(n) to the listZ, adda(n) to the lista, addb(n) to the
list b.

end for

∇w∗Ln(w) = −e(n)Φ(z(n)). Following the same procedure,
we conclude that the update rule becomes:w(n) = w(n−1)+
µe(n) ·Φ(z(n)), and assuming thatw(0) = 0, one concludes
that:

w(n) =µ
n
∑

k=1

e(k)Φ(z(k)).

However, although this relation is different to equation (28),
the filter output at iterationn, for this filter, turns out to be
exactly the same as before:

d̂(n) =〈w(n− 1),Φ(z(n))〉H

=µ

n−1
∑

k=1

e(k)〈Φ(z(k)),Φ(z(n))〉H,

which is in line with what we know for the standard complex
LMS.

B. Complex KLMS with pure complex kernels - CKLMS2

As, in section VII-A, consider the sequence of examples
(z(1), d(1)), (z(2), d(2)), . . . , (z(N), d(N)), whered(n) ∈
C, z(n) ∈ V ⊂ Cν , z(n) = x(n) + iy(n), x(n),y(n) ∈ Rν ,
for n = 1, . . . , N . Consider also a complex reproducing kernel
κ defined onX × X , X ⊆ Cν and the respective complex
RKHS H. Each elementf ∈ H may be cast in the form
f = uf + ivf , uf , vf ∈ H, where H is a real Hilbert
space. We map the pointsz(n) to the complex RKHSH
using the feature map̃Φ : X → H : Φ̃(z) = 〈·, κ(·, z)〉H,
for n = 1, . . . , N . Estimating the filter output bŷd(n) =
〈Φ̃(z(n)),w〉H, the objective of the complex Kernel LMS is to

minimizeE [Ln(w)], at each instancen. Once more, we apply
the complex LMS to the transformed data, using the rules of
Wirtinger’s calculus to compute the gradient ofLn(w), i.e.,
∇w∗Ln(w) = −e(n)∗ · Φ̃(z(n)). Therefore, the CKLMS2
update rule becomesw(n) = w(n − 1) + µe(n)∗ · Φ̃(z(n)),
as expected, wherew(n) denotes the estimate at iterationn.

Assuming thatw(0) = 0, the repeated application of the
weight-update equation gives:

w(n) =

n
∑

k=1

e(k)∗Φ̃(z(k)). (30)

Thus, the filter output at iterationn becomes:

d̂(n) =〈Φ̃(z(n)),w(n− 1)〉H

=µ

n−1
∑

k=1

e(k)〈Φ̃(z(n)), Φ̃(z(k))〉H

=µ

n−1
∑

k=1

e(k)κ(z(k), z(n)).

We should note, that the CKLMS2 algorithm may be
equivalently derived, if one blindly applies the kernel trick
on the complex LMS. However, such an approach conceals
the mathematical framework that lies underneath, which is
needed if one seeks a deeper understanding of the problem.
The repeated application of the update equation of the CLMS
yields:

w(n) =
n
∑

k=1

e(k)∗z(k),

while the filter output at iterationn is given by:

d̂(n) = µ

n−1
∑

k=1

e(k)z(n)Hz(k),

where the notation·H denotes the Hermitian matrix. It is
evident that the application of the kernel trick on these
equations yields the same results.

Furthermore, note that, using the complex gaussian kernel,
the algorithm is automatically normalized. The CKLMS2
algorithm is summarized in Algorithm 2.

Another formulation of the CKLMS2 algorithm may be
derived if we estimate the filter output aŝd(n) = 〈w̃(n −
1),Φ(z(n))〉H. Then the update rule becomes

w(n) = w(n− 1) + µe(n) · Φ̃(z(n)).

Assuming thatw(0) = 0, the repeated application of the
weight-update equation gives:

w(n) =
n
∑

k=1

e(k)Φ̃(z(k)),

and the filter output at iterationn becomes:

d̂(n) = µ

n−1
∑

k=1

e(k)κ(z(n), z(k)). (31)

Note that the two formulations of the CKLMS2 are not
identical, as it was the case for CKLMS. However, all the
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simulated experiments that we performed, using the complex
gaussian kernel, exhibited similar performance (in terms of
signal to noise ratio - SNR).

Algorithm 2 Normalized Complex Kernel LMS2
(NCKLMS2)
INPUT: (z(1), d(1)), . . . , (z(N), d(N))
OUTPUT: The expansion
w =

∑N
k=1 a(k)κ(·, z(k)).

Initialization: Set a = {}, Z = {} (i.e., w = 0). Select
the step parameterµ and the parameterσ of the complex
gaussian kernel.

for n = 1 : N do
Compute the filter output:

d̂(n) =
n−1
∑

k=1

a(k) · κ(z(k), z(n)).

Compute the error:e(n) = d(n)− d̂(n).
γ = κ(z(n), z(n)).
a(n) = µe(n)/γ.
Add the new centerz(n) to the list of centers, i.e., add
z(n) to the listZ, adda(n) to the lista.

end for

C. Sparsification

The main drawback of any kernel based adaptive filtering
algorithm is that a growing number of training points,z(n),
is involved, as it is apparent from (28), (30) in the case
of complex KLMS. Hence, increasing memory and com-
putational resources are needed, as time evolves. Several
strategies have been proposed to cope with this problem and
to come up with sparse solutions. In this paper, we employ the
well known novelty criterion [14], [37]. In novelty criterion
online sparsification, a dictionary of points, C, is formed and
updated appropriately. Whenever a new data pair(Φ(zn), dn)
is considered, a decision is immediately made of whether to
add the new center,Φ(z(n)), to the dictionary of centersC.
The decision is reached following two simple rules. First,
the distance of the new center,Φ(z(n)), from the current
dictionary is evaluated:dis = minck∈C{‖Φ(z(n)) − ck‖H}.
If this distance is smaller than a given thresholdδ1 (i.e., the
new center is close to the existing dictionary), then the center
is not added toC. Otherwise, we compute the prediction error
en = dn − d̂n. If |en| is smaller than a predefined threshold
δ2, then the new center is discarded. Only if|en| ≥ δ2 the
new centerΦ(z(n)) is added to the dictionary.

An alternative method has been considered in [4], which
results in an exponential forgetting mechanism of past data.
In [6], [38], the sliding window rationale has been considered.
In all the implementations of CKLMS that are presented in this
paper the novelty criterion was adopted.

VIII. E XPERIMENTS

The performances of CKLMS1 and CKLMS2 have been
tested in the context of: a) a nonlinear channel equalization

r(n)q(n)Linear

filter

Non linear 

filter +
s(n) t(n) Adaptive

filter

-

)(ns
 

s(n)

noise

e(n)

Fig. 1. The equalization task.

task (see figure 1) and b) a nonlinear channel identification
task.

A. Channel Equalization

For the first case, two nonlinear channels have been consid-
ered. The first channel (labeled assoft nonlinear channelin
the figures) consists of a linear filter:

t(n) = (−0.9 + 0.8i) · s(n) + (0.6− 0.7i) · s(n− 1)

and a memoryless nonlinearity

q(n) = t(n) + (0.1 + 0.15i) · t2(n) + (0.06 + 0.05i) · t3(n).
The second one (labeled asstrong nonlinear channelin
the figures) is comprised by the same linear filter and the
nonlinearity:

q(n) = t(n) + (0.2 + 0.25i) · t2(n) + (0.12 + 0.09i) · t3(n).

These are standard models that have been extensively used in
the literature for such tasks [1]. At the receiver end of the
channels, the signal is corrupted by white Gaussian noise and
then observed asr(n). The level of the noise was set to 16dB.
The input signal that was fed to the channels had the form

s(n) = 0.70
(

√

1− ρ2X(n) + iρY (n)
)

, (32)

whereX(n) and Y (n) are gaussian random variables. This
input is circular for ρ =

√
2/2 and highly non-circular if

ρ approaches 0 or 1 [18]. Note that the issue of circularity
is very important in complex adaptive filtering. Circularity
is intimately related to rotation in the geometric sense. A
complex random variableZ is called circular, if for any angle
φ bothZ andZeiφ (i.e., the rotation ofZ by angleφ) follow
the same probability distribution [17]. Loosely speaking,non
circularity adds some form of nonlinearity to the signal. Itcan
be proved that widely linear estimation (i.e., linear estimation
in both z and z∗) outperforms standard linear estimation for
general (i.e., circular or non-circular) complex signals.For
circular signals, the two models lead to identical results [16],
[39].

The aim of a channel equalization task is to construct an
inverse filter, which acts on the outputr(n) and reproduces
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the original input signal as close as possible. To this end, we
apply the NCKLMS1 and the NCKLMS2 algorithms to the
set of samples

((r(n+D), r(n +D − 1), . . . , r(n+D − L+ 1)), s(n)) ,

whereL > 0 is the filter length andD the equalization time
delay, which is present to, almost, any equalization set up.

Experiments were conducted on a set of 5000 samples
of the input signal (32) considering both the circular and
the non-circular cases. The results are compared with the
NCLMS and the WL-NCLMS (i.e., widely linear NCLMS)
algorithms and with two adaptive nonlinear algorithms: a)
the CNGD algorithm, which is thoroughly described in [17]
and a Multi Layer Perceptron (MLP) with 50 nodes in the
hidden layer (proposed in [18]). In both cases, the complex
tanh activation function was employed. Note that the WL-
NCLMS has been recently used as an alternative to the
CLMS, in an attempt to cope with non circularity as well
as with soft nonlinearities. In all algorithms, the step update
parameter,µ, is tuned for the best possible results (in terms
of the steady-state error rate). For the case of the MLP, the
design was also tuned so that the best possible results were
obtained. Time delayD was also set for optimality. Figure
2, shows the learning curves of the NCKLMS1 using the
real Gaussian kernelκ(x,y) = exp(−‖x − y‖2/σ2) (with
σ = 5) and the NCKLMS2 using the complex Gaussian

kernel κσ,Cd(z,w) := exp
(

−
∑

d
i=1

(zi−w∗

i )
2

σ2

)

(with σ = 5),
together with those obtained from the NCLMS and the WL-
NCLMS algorithms. Figure 3 shows the learning curves of
the NCKLMS1 and NCKLMS2 versus the CNGD and the
L-50-1 MLP. Finally, figure 4 compares the learning curves
of NCKLMS1 versus a split channel approach, that treats the
complex signal as two real ones using the KLMS.

The novelty criterion was used for the sparsification of
the NCKLMS1 with δ1 = 0.15 and δ2 = 0.2 and of the
NCKLMS2 with δ1 = 0.1 and δ2 = 0.2. In both examples,
NCKLMS1 considerably outperforms the linear, widely linear
(i.e., NCLMS and WL-NCLMS) and nonlinear (CNGD and
MLP) algorithms (see figures 2, 3). The NCKLMS2 also
exhibits improved performance compared to the linear, widely
linear and nonlinear algorithms. However, in both cases,
this enhanced behavior comes at a price in computational
complexity, since the NCKLMS requires the evaluation of the
kernel function. In terms of the required computer time, the
complexity of CKLMS1 and CKLMS2 is of the same order as
the complexity of the MLP. Comparing the NCKLMS1 and the
NCKLMS2, the experiments show that the results differ, with
the former one leading to an improved performance. Finally,
figure 4 illustrates that the split channel approach performs
poorly compared to the NCKLMS1, especially in the circular
case, as it cannot capture the correlation between the two real
channels.
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Fig. 2. Learning curves for KCLMS1 (µ = 1/2), KCLMS2, (µ = 1/4),
CLMS (µ = 1/16) and WL-CLMS (µ = 1/16) (filter lengthL = 5, delay
D = 2) for the soft nonlinear channel equalization problem, for (a) the
circular input case, (b) the non-circular input case (ρ = 0.1).

B. Channel Identification

The nonlinear channel that was considered (see [18]) con-
sists of a linear filter:

t(n) =

5
∑

k=1

h(k) · s(n− k + 1),

where

h(k) = 0.432

(

1 + cos

(

2π(k − 3)

5

)

−

(

1 + cos
2π(k − 3)

10

)

i

)

,

for k = 1, . . . , 5, and the nonlinear component:

x(n) = t(n) + (0.15− 0.1i)t2(n).

Similar to the equalization case, the input signal that was fed to the
channel had the form (32). Experiments were conducted on a set of
10000 samples of the input signal (32), corrupted by white gaussian
noise, considering both the circular and the non-circular case. The
level of the noise was set to 18dB. Figure 5, shows the learning
curves of the NCKLMS1 and the NCKLMS2 together with those
obtained from the CNGD and theL-50-1 MLP. In this example,
also, NCKLMS1 considerably outperforms both the CNGD and the
L-50-1 MLP. The NCKLMS2 although performs better than MLP,
CNGD, its performance is inferior to NCKLMS1.

IX. CONCLUSIONS

A new framework for kernel adaptive filtering for complex signal
processing has been developed. The proposed methodology, besides
providing a skeleton for working with pure complex kernels,allows
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Fig. 3. Learning curves for KCLMS1 (µ = 1/2), KCLMS2, (µ = 1/4),
CNGD andL-50-1 MLP (filter lengthL = 5, delayD = 2) for the hard
nonlinear channel equalization problem, for (a) the circular input case, (b) the
non-circular input case (ρ = 0.1).

for the construction of complex RKHSs from real ones, through
a technique called complexification of RKHSs. Such an approach
provides the advantage of working with popular and well understood
real kernels in the complex domain. It has to be pointed out, that
our method is a general one and can be used on any type of real
and/or complex kernels that have or can be developed. To the best of
our knowledge, this is the first time that a methodology for complex
adaptive processing in RKHSs is proposed. Wirtinger’s calculus has
been extended to cope with the problem of differentiation inthe
involved (infinite) dimensional Hilbert spaces. The derived rules and
properties of the extended Wirtinger’s calculus on complexRKHS
turn out to be similar in structure to the special case of finite
dimensional complex spaces. The proposed framework was applied
on the complex LMS and two realizations for the complex Kernel
LMS algorithm were developed. Experiments, which were performed
on both the equalization and the identification problem of a nonlinear
channel, for both circular and non-circular input data, showed a
significant decrease in the steady state mean square error, compared
with other known linear, widely linear and nonlinear techniques,
while retaining a fast convergence.

APPENDIX A
PROOF OFPROPOSITIONVI.2

We start with a lemma that will be used to prove the claim.

Lemma A.1. Consider the Hilbert spaceH anda, b ∈ H. The limit

lim
‖h‖H→0

〈h∗,a〉H − 〈h, b〉H
‖h‖H

= 0, (33)

if and only ifa = b = 0.
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Fig. 4. Learning curves for KCLMS1 (µ = 1/2) and Dual Channel Real
KLMS (µ = 1/2) for the soft nonlinear channel equalization problem, for
(a) the circular input case, (b) the non-circular input case(ρ = 0.1).

Consider the first order Taylor expansions ofTr and Ti at c =
c1 + ic2 = (c1, c2):

Tr(c+ h) = Tr(c) + 〈h1,∇uTr(c)〉H
+ 〈h2,∇vTr(c)〉H + o(‖h‖H2),

Ti(c+ h) = Ti(c) + 〈h1,∇uTi(c)〉H
+ 〈h2,∇vTi(c)〉H + o(‖h‖H2).

Multiplying the second relation withi and adding it to the first one,
we take:

T (c+ h) = T (c) + 〈h1,∇uTr(c)− i∇uTi(c)〉H
+ 〈h2,∇vTr(c)− i∇vTi(c)〉H + o(‖h‖H).

To simplify the notation we may define

∇uT (c) = ∇uTr(c) + i∇uTi(c)

∇vT (c) = ∇vTr(c) + i∇vTi(c)

and obtain:

T (c+ h) = T (c) + 〈h1, (∇uT (c))∗〉
H

+ 〈h2, (∇vT (c))∗〉
H
+ o(‖h‖H2).

Next, we substituteh1 andh2 using the relationsh1 = h+h∗

2
and

h2 = h−h∗

2i
and use the sesquilinear property of the inner product

of H:

T (c+ h) = T (c) +
1

2
〈h, (∇uT (c)− i∇vT (c))∗〉

H

+
1

2
〈h∗, (∇uT (c) + i∇vT (c))∗〉

H
+ o(‖h‖H).
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Fig. 5. Learning curves for KCLMS1 (µ = 1/2), KCLMS2, (µ = 1/4),
CNGD andL-50-1 MLP (filter lengthL = 5) for the nonlinear channel
identification problem, for (a) the circular input case, (b)the non-circular
input case (ρ = 0.1).

It has already been shown that equation (21) is essential forthe
development of Wirtinger’s calculus. To complete the proofof the
proposition we compute the fraction that appears in the definition of
the complex Fréchet derivative:

T (c+ h)− T (c)− 〈h,w〉H
‖h‖H

=

(

1

2
〈h, (∇uT (c)− i∇vT (c))∗〉

H

+
1

2
〈h∗, (∇uT (c) + i∇vT (c))∗〉

H
− 〈h,w〉H

)

/

‖h‖H

+
o(‖h‖H)

‖h‖H
.

Recall that, sinceo(‖h‖H)/‖h‖H → 0 as‖h‖H → 0, for this limit
to exist and vanish, it is necessary that∇uT (c)+ i∇vT (c) = 0 and
w∗ = ∇uT (c)− i∇vT (c) (see lemma A.1). However, according to
our definition,

∇uT (c) + i∇vT (c) = (∇uTr(c)−∇vTi(c))

+ i (∇uTi(c) +∇vTr(c)) .

Thus,T is differentiable in the Fréchet complex sense, iff the Cauchy-
Riemann conditions hold. Moreover, in this case:

∇T (c) =∇uTr(c) + i∇uTi(c)

=∇vTi(c)− i∇vTr(c).

APPENDIX B
PROPERTIES OFWIRTINGER’ S DERIVATIVES ON COMPLEX

HILBERT SPACES

Below we give a complete list of the main properties of the
extended Wirtinger’s Calculus in complex Hilbert spaces. Arigorous
and detailed presentation of the theory, as well as the proofs of all
these properties can be found in [35].

1) If T (f) is f -holomorphic atc (i.e., it has a Taylor series
expansion with respect tof around c), then its Fréchet
W-derivative atc degenerates to the standard Fréchet com-
plex derivative and its Fréchet CW-derivative vanishes, i.e.,
∇f∗T (c) = 0.

2) If T (f) is f∗-holomorphic atc (i.e., it has a Taylor series
expansion with respect tof∗ aroundc), then∇fT (c) = 0.

3) (∇fT (c))∗ = ∇f∗T ∗(c).
4) (∇f∗T (c))∗ = ∇fT

∗(c).
5) If T is real valued, then(∇fT (c))∗ = ∇f∗T (c).
6) The first order Taylor expansion aroundf ∈ H is given by

T (f + h) =T (f) + 〈h, (∇fT (f))∗〉H + 〈h∗, (∇f∗T (f))∗〉H.

7) If T (f) = 〈f ,w〉H, then∇fT (c) = w∗, ∇f∗T (c) = 0, for
everyc.

8) If T (f) = 〈w,f〉H, then∇fT (c) = 0, ∇f∗T (c) = w, for
everyc.

9) If T (f ) = 〈f∗,w〉H, then∇fT (c) = 0, ∇f∗T (c) = w∗,
for everyc.

10) If T (f) = 〈w,f∗〉H, then∇fT (c) = w, ∇f∗T (c) = 0, for
everyc.

11) Linearity: If T ,S : H → C are Fréchet differentiable in the
real sense atc ∈ H andα, β ∈ C, then

∇f (αT + βS)(c) = α∇fT (c) + β∇fS(c)

∇f∗(αT + βS)(c) = α∇f∗T (c) + β∇f∗S(c).

12) Product Rule: IfT ,S : H → C are Fréchet differentiable in
the real sense atc ∈ H, then:

∇f (T · S)(c) = ∇fT (c)S(c) + T (c)∇fS(c),

∇f∗(T · S)(c) = ∇f∗T (c)S(c) + T (c)∇f∗S(c).

13) Division Rule: IfT ,S : H → C are Fréchet differentiable in
the real sense atc ∈ H andS(c) 6= 0, then:

∇f

(

T

S

)

(c) =
∇fT (c)S(c)− T (c)∇fS(c)

S2(c)
,

∇f∗

(

T

S

)

(c) =
∇f∗T (c)S(c)− T (c)∇f∗S(c)

S2(c)
.

14) Chain Rule: IfT : H → C is Fréchet differentiable atc ∈ H,
S : C → C is differentiable in the real sense atT (c) ∈ C,
then:

∇fS ◦ T (c) =
∂S

∂z
(T (c))∇fT (c)

+
∂S

∂z∗
(T (c))∇f (T

∗)(c),

∇f∗S ◦ T (c) =
∂S

∂z
(T (c))∇f∗T (c)

+
∂S

∂z∗
(T (c))∇f∗(T ∗)(c).

The proofs of properties 1 and 2 are rather obvious. Here, we give
the proofs of properties 3, 7 and 11, which have been used to derive
the main results of this paper.

Proof of property 3: The existence of∇fT (c) and∇f∗T (c)
is guaranteed by the Fréchet differentiability ofT at c (in the real
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sense). To take the result, observe that:

(∇fT (c))∗ =
1

2
(∇uTr(c) +∇vTi(c))

−
i

2
(∇uTi(c)−∇vTr(c))

=
1

2
(∇uTr(c)−∇v(−Ti)(c))

+
i

2
(∇u(−Ti)(c) +∇vTr(c))

= (∇f∗T
∗(c)) .

Property 4 can be proved similarly.
Proof of property 7: Considering the definition of Fréchet

complex derivative (see equation 17), we observe that:

T (c+ h)− T (c)−〈h, g〉H =

〈c+ h,w〉H − 〈c,w〉H − 〈h, g〉H

= 〈h,w〉H − 〈h, g〉H.

Thus,T is Fréchet complex differentiable atc, with ∇T (c) = w∗

and from property 1,∇f∗(c) = 0 and∇f (c) = w.
Proof of property 11: Let T (f) = Tr(uf , vf ) + iTi(uf , vf ),

S(f) = S(uf + ivf ) = Sr(uf , vf ) + iSi(uf , vf ) be two complex
functions andα, β ∈ C, such thatα = α1 + iα2, β = β1 + iβ2.
ThenR(f) = αT (f) + βS(f) and the Fréchet W-derivative ofR
will be given by:

∇fR(c) =
1

2
(∇uRr(c) +∇vRi(c)) +

i

2
(∇uRi(c)−∇vRr(c)) .

Applying the linearity property of the ordinary Fréchet derivative,
after some algebra we take the result. For the second part, inview of
properties 3, 4 and the linearity property of the Fréchet W-derivative,
the Fréchet CW-derivative ofR at c will be given by:

∇f∗R(c) =∇f∗(αT + βS)(c)

= (∇f (αT + βS)∗(c))
∗

=(∇f (α
∗
T

∗ + β∗
S

∗)(c))
∗

=(α∗∇fT
∗(c) + β∗∇fS

∗(c))
∗

=α (∇fT
∗(c))

∗
+ β (∇fS

∗(c))
∗

=α∇f∗T (c) + β∇f∗S(c),

which completes the proof.
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